
Вестник Северного (Арктического) федерального университета. Серия «Гуманитарные и социальные науки»
ISSN 2227-6564 e-ISSN 2687-1505 DOI:10.37482/2687-1505
![]()
Юридический и почтовый адрес учредителя и издателя: САФУ им. М.В. Ломоносова, наб. Северной Двины, д. 17, г. Архангельск, Россия, 163002
Тел: (818-2) 21-61-00, вн. 18-20 о журнале |
Рубрика: Физика, Математика, Информатика Скачать статью (pdf, 5.3MB )УДК517.927.25Сведения об авторахКонечная Наталья Николаевна, Институт математики, информационных и космических технологий Северного (Арктического) федерального университета имени М.В. Ломоносоваадрес: 163002, г. Архангельск, ул. Урицкого, д. 68, к. 3; e-mail: n.konechnaya@narfu.ru Сафонова Татьяна Анатольевна, Институт математики, информационных и космических технологий Северного (Арктического) федерального университета имени М.В. Ломоносова адрес: 163002, г. Архангельск, наб. Северной Двины, д. 17; e-mail: t.Safonova@narfu.ru Тагирова Рена Насировна, Институт математики, информационных и космических технологий Северного (Арктического) федерального университета имени М.В. Ломоносова адрес: 163002, г. Архангельск, наб. Северной Двины, д. 17; e-mail: tagirova_rena@mail.ru АннотацияОдной из интересных задач спектральной теории операторов является изучение асимптотического поведения функции распределения при больших значениях спектрального параметра λ. Частным случаем этой задачи является изучение асимптотики собственных значений, собственных функций в зависимости от свойств коэффициентов дифференциального выражения и получение формул регуляризованного следа для соответствующих операторов. Для дифференциального оператора Штурма–Лиувилля, порожденного выражением –yʺ(x) + q(x)y(x) и самосопряженными краевыми условиями в пространстве L2[a, b], с непрерывно дифференцируемым потенциалом существенные результаты были получены И.М. Гельфандом, Б.М. Левитаном в 1953 году. Сравнительно недавно в работах А.А. Шкаликова, А.М. Савчука были впервые получены асимптотика собственных значений, собственных функций и формула регуляризованного следа для операторов Штурма–Лиувилля на конечном отрезке с сингулярными потенциалами, не являющимися локально интегрируемыми функциями, и краевыми условиями Дирихле. При этом применялось определение оператора Штурма–Лиувилля с потенциалом-распределением первого порядка как оператора, порожденного квазидифференциальным выражением второго порядка с локально суммируемыми коэффициентами, впервые рассмотренное в работах А.М. Савчука и А.А. Шкаликова. Такой подход позволил нам в данной работе исследовать асимптотическое поведение собственных значений и получить формулы регуляризованного следа первого порядка для операторов, порожденных выражением –yʺ(x) + hδ(x)y(x), где δ(x) – δ-функция Дирака, h ϵ R, и некоторыми самосопряженными краевыми условиями в пространстве L2[–1, 1], а именно условиями вида: i) y(–1) = y(1) = 0; ii) y[1](–1) = y[1](1) = 0; iii) y(–1) = y[1](1) = 0; iv) y(–1) = = y(1), y[1](–1) = y[1](1). Для нахождения асимптотики собственных значений указанных операторов найдены соответствующие трансцендентные уравнения. Дальнейший анализ полученных уравнений позволяет получить формулы регуляризованного следа первого порядка рассмотренных операторов.Ключевые словаквазидифференциальные операторы, оператор Штурма–Лиувилля с δ-потенциалом, асимптотика собственных значений, регуляризованный след оператора.Список литературы
|