
Вестник Северного (Арктического) федерального университета. Серия «Гуманитарные и социальные науки»
ISSN 2227-6564 e-ISSN 2687-1505 DOI:10.37482/2687-1505
![]()
Юридический и почтовый адрес учредителя и издателя: САФУ им. М.В. Ломоносова, наб. Северной Двины, д. 17, г. Архангельск, Россия, 163002
Тел: (818-2) 21-61-00, вн. 18-20 о журнале |
Рубрика: Физика, Математика, Информатика Скачать статью (pdf, 3.7MB )УДК533.72Сведения об авторахПопов Василий Николаевич, доктор физико-математических наук, доцент, заведующий кафедрой математики института математики, информационных и космических технологий Северного (Арктического) федерального университета имени М.В. Ломоносова. Автор 173 научных публикаций, в т. ч. 4 монографийГулакова Светлана Викторовна, аспирант кафедры прикладной математики института математики, информационных и космических технологий Северного (Арктического) федерального университета имени М.В. Ломоносова. Автор 7 научных публикаций
АннотацияВ рамках кинетического подхода построено аналитическое (в виде ряда Неймана) решение задачи об изотермическом скольжении разреженного газа вдоль твердой плоской поверхности. В качестве основного уравнения используется линеаризованное уравнение Вильямса, а в качестве граничного условия на обтекаемой поверхности – модель зеркально-диффузного отражения Максвелла. Выбор модели интеграла столкновений обусловлен тем, что предположение о независимости частоты столкновений молекул газа от их скорости представляет собой достаточно сильное упрощение. Это предположение приводит к тому, что частота столкновений молекул газа должна быть пропорциональна абсолютной величине их тепловой скорости. Именно это и было учтено при построении уравнения Вильямса. Выбор модели граничного условия обусловлен тем, что для реальных поверхностей коэффициент диффузности может существенно отличаться от единицы. Общее решение исходного интегро-дифференциального уравнения построено в пространстве обобщенных функций. Подстановка построенного общего решения в граничные условия приводит к сингулярному интегральному уравнению с ядром типа Коши, которое с использованием методов теории комплексного переменного сводится к краевой задаче Римана. Неизвестные параметры, входящие в общее решение, найдены из условия разрешимости построенной краевой задачи. Исходя из статистического смысла функции распределения, для различных значений коэффициента диффузности построен профиль массовой скорости газа в полупространстве над стенкой и вычислена скорость изотермического скольжения газа. Проведенный численный анализ полученных выражений и выполненное сравнение полученных результатов с аналогичными результатами, опубликованными в открытой печати, подтверждает зависимость значений коэффициентов скольжения от выбора модели интеграла столкновений.Ключевые словакинетическое уравнение Больцмана, модельные кинетические уравнения, точные аналитические решения.Список литературы
|