CC..png   

16plus.png

Legal and postal addresses of the founder and publisher: Northern (Arctic) Federal University named after M.V. Lomonosov, Naberezhnaya Severnoy Dviny, 17, Arkhangelsk, 163002, Russian Federation

Editorial office address: Vestnik of Northern (Arctic) Federal University. Series "Humanitarian and Social Sciences", 56 ul. Uritskogo, Arkhangelsk

Phone: (818-2) 21-61-20, ext. 18-20
E-mail: vestnik_gum@narfu.ru
https://vestnikgum.ru/en/

ABOUT JOURNAL

Linguistic Mechanisms for Generating Fake News Using Artificial Intelligence. С. 87-97

Версия для печати

Section: Linguistics

Download (pdf, 0.4MB )

UDC

[811.134.2+811.161.1]:81ʼ42

DOI

10.37482/2687-1505-V437

Authors

Roman V. Trofimov
Postgraduate Student, Department of General and Comparative Linguistics, Moscow State Linguistic University (address: ul. Ostozhenka 38, Moscow, 119034, Russia).
e-mail: mail@romantrofimov.ru, ORCID: https://orcid.org/0009-0003-8206-7005

Abstract

Since 2022, there has been an active integration of artificial intelligence into all areas of human activity. This phenomenon, on the one hand, has facilitated the simplification of many tasks; on the other hand, however, humanity is now faced with new challenges. The use of generative neural networks for instant creation of texts and media content increases the risks of spreading false information and exacerbates problems with the verification of presented data. This paper aims to examine the process of creating fake news in the media space. The research is focused on the linguistic mechanisms for generating fakes using artificial intelligence (AI). The material for the study consists of texts created by neural networks in Russian and Spanish. The research methods include an experiment involving fake news production using AI, as well as discourse analysis, contextual analysis, and comparative analysis of the generated texts. The results of the study demonstrate that producing false information about a person is possible for any generative model that only considers keywords. To create a news event, networks utilize generally known information of different years, thereby violating the principle of chronotope. In the “news” text, networks employ mechanisms of invoking authority and anonymous scientific studies, as well as use scientific terminology, making the information appear plausible. Russian neural networks Shedevrum and GigaChat place their own limitations, for instance, on creating fake content about political figures, both Russian and foreign. ChatGPT has an Us vs Them recognition system, meaning that the training program of OpenAI’s generative neural network incorporates a subjective assessment of sensitive political topics shared by most countries of the collective West.

Keywords

fake, fake news, generated news, “hallucination”, artificial intelligence, neural networks

References

  1. Nerents D.V. Osobennosti feykovogo kontenta v mediaprostranstve v epokhu razvitiya iskusstvennogo intellekta [Features of Fake Content in the Media Space in the Era of Artificial Intelligence Development]. Litera, 2024, no. 7, pp. 107–114.
  2. Marzal-Felici J., Casero-Ripollés A. Editorial. El análisis de las imágenes en la era de las fake news. adComunica, 2021, no. 22, pp. 11–20. https://doi.org/10.6035/2174-0992.2021.22.1
  3. Badillo Matos A. La sociedad de la desinformación: propaganda, “fake news” y la nueva geopolítica de la información. Real Instituto Elcano, 14 May 2019. Available at: https://www.realinstitutoelcano.org/documento-de-trabajo/la-sociedad-de-la-desinformacion-propaganda... (accessed: 10 December 2024).
  4. Elías C. El periodismo como herramienta contra las fake news. Elías C., Teira D. (eds.). Manual de periodismo y verificación de noticias en la era de las fake news. Madrid, 2021, pp. 19–57. https://doi.org/10.5944/m.periodismo.verificacion.2021.02
  5. Murolo N.L. La posverdad es mentira. Un aporte conceptual sobre “fake news” y periodismo. Aparici R., García-Marín D. (eds.). La posverdad. Una cartografía de los medios, las redes y la política. Barcelona, 2019, pp. 65–80.
  6. Sternin I.A., Shesterina A.M. Markery feyka v mediatekstakh [Markers of Fake Information in Media Texts]. Voronezh, 2021. 60 p.
  7. Lektorskiy V.A. (ed.). Chelovek i sistemy iskusstvennogo intellekta [Humans and Artificial Intelligence Systems]. St. Petersburg, 2022. 328 p.
  8. Trofimova V.A. Logos as a Source of Communicative Pressure Confrontation in Various Types of Discourse. Curr. Iss. Philol. Pedagog. Linguist., 2020, no. 1, pp. 268–279 (in Russ.). https://doi.org/10.29025/1994-7720-2021-1-268-279
  9. Tsoy L.N. Chto takoe konfliktogen? [What Is a Conflict-Generating Factor]. Available at: https://conflictmanage-ment.ru/chto-takoe-konfliktogen/ (accessed: 1 December 2024).
  10. Akhmadulin E.V. “Novost’” kak osnova zhurnalizma [The “News” as the Basis of Journalism]. Gumanitarnyy vektor, 2020, vol. 15, no. 5, pp. 149–154.
  11. DeFleur M.L., Dennis E.E. Understanding Mass Communication. Boston, 1996. 646 p.
  12. Raspopova S.S., Bogdan E.N. Feykovye novosti: priroda proiskhozhdeniya [Fake News: The Nature of Origin]. Vestnik Chelyabinskogo gosudarstvennogo universiteta, 2017, no. 11, pp. 48–53.
  13. Sukhodolov A.P. Fenomen “feykovykh novostey” v sovremennom mediaprostranstve [The Phenomenon of “Fake News” in the Modern Media Space]. Evroaziatskoe sotrudnichestvo: gumanitarnye aspekty, 2017, no. 1, pp. 87–106.
  14. Ponomarev N.F. Feykovye novosti v kontekste postpravdy [Fake News in the Context of Post-Truth]. E-scio.ru, 2019, no. 6, pp. 1–8.
  15. D’yakova T.V. Osnovnye printsipy i struktura novostnykh soobshcheniy [Basic Principles and Structure of News Messages]. Lingua mobilis, 2011, no. 2, pp. 102–106.
  16. Olomskaya N.N., Zinkovskaya A.V. Mechanisms of Generation of Fake Information by Artificial Intelligence in Modern Media Discourse. Russ. Soc. Humanit. J., 2024, no. 2, pp. 207–223 (in Russ.).

Make a Submission


знак_анг.png

INDEXED IN:      

Elibrary.ru

infobaseindex

logotype.png


Логотип.png


Лань

OTHER NArFU JOURNALS: 

Journal of Medical and Biological
Research

Forest Journal 
obl_les2023.jpg 

Arctic and North  

AiS.jpg

Продолжая просмотр сайта, я соглашаюсь с использованием файлов cookie владельцем сайта в соответствии с Политикой в отношении файлов cookie, в том числе на передачу данных, указанных в Политике, третьим лицам (статистическим службам сети Интернет).