Vestnik of Northern (Arctic) Federal University.
Series "Humanitarian and Social Sciences"
ISSN 2227-6564 e-ISSN 2687-1505 DOI:10.37482/2687-1505
Legal and postal addresses of the publisher: office 1336, 17 Naberezhnaya Severnoy Dviny, Arkhangelsk, 163002, Russian Federation, Northern (Arctic) Federal University named after M.V. Lomonosov
Phone: (818-2) 21-61-21, ext. 18-20 ABOUT JOURNAL |
Section: Philosophy Download (pdf, 4.4MB )UDC164.07DOI10.17238/issn2227-6564.2019.4.111AuthorsVladimir N. NikolkoTavrida Academy, V.I. Vernadsky Crimean Federal University; prosp. Akademika Vernadskogo 4, Simferopol, 295007, Republic of Crimea; e-mail: vnnikolko@mail.ru AbstractThe article points out that Aristotle understood as syllogisms only those three simple categorical propositions of the forms A (“All ... are...”), E (“No ... are...”), I (“Some ...are...”), or O (“Some ... are not...”) that are nowadays called “correct” statements and are conventional speech, whose truth of the premises guarantees the truth of conclusions. Like any conventional speech, syllogism is a correspondence between the content of the premises and conclusions. Under the conditions of complete dominance of functionalism in sciences, Aristotel’s syllogism could only be defined as a function, as a one-to-one correspondence between premises and conclusion. This article develops the idea of non-functional essence of syllogism as an ambiguous correspondence between the values of premises and conclusions. As of today, such correspondences have no name. The author calls them funcfors and, therefore, thoroughly examines functionalism as the fundamental methodology of science, clarifies the concept of functions, specifies the content of funcfors, which Aristotelian syllogisms are, and introduces other funcfor contents of syllogisms. The paper reproduces the experience of determining Aristotel’s syllogisms in the way it actually happened. Like any medium-scale discovery, funcfor content leads to clarifications, corrections, removal of certain restrictions, shift in priorities, categorical permutations – all this is included in the funcfor expansion of Aristotelian syllogistic. It should be noted that the main circumstance stimulating the author’s study is the fact that syllogistic is moving beyond the current functional orientation of scientific knowledge, which may indicate the onset of a new stage of theoretical exploration of the world. In addition, the article provides a definition of Aristotle’s syllogisms on a funcfor basis.KeywordsAristotle’s syllogism, function, funcfor, ambiguous correspondence, functionalism, X-matrix, funcfor contentReferences1. Rogers H. Theory of Recursive Functions and Effective Computability. New York, 1967 (Russ. ed.: Rodzhers Kh. Teoriya rekursivnykh funktsiy i effektivnaya vychislimost’. Moscow, 1972. 624 p.).2. Yoshida K. Functional Analysis. Berlin, 1965. 458 p. (Russ. ed.: Iosida K. Funktsional’nyy analiz. Moscow, 1967. 624 p.). 3. Kantorovich L.V., Akilov G.P. Funktsional’nyy analiz [Functional Analysis]. Moscow, 1984. 752 p. 4. Kolmogorov A.N., Fomin S.V. Elementy teorii funktsiy i funktsional’nogo analiza [Elements of the Function Theory and Functional Analysis]. Moscow, 1976. 544 p. 5. Marchenkov S.S. Zamknutye klassy bulevykh funktsiy [Closed Classes of Boolean Functions]. Moscow, 2000. 128 p. 6. Goldblatt R. Topoi: The Categorial Analysis of Logic. Amsterdam, 1979 (Russ. ed.: Goldblatt R. Toposy. Kategornyy analiz logiki. Moscow, 1983. 488 p.). 7. Frege G. Bulev logicheskiy formul’nyy yazyk i moe ischislenie ponyatiy [Boole’s Logical Formula-Language and My Concept-Script]. Frege G. Logika i logicheskaya semantika [Logic and Logical Semantics]. Moscow, 2000, pp. 147–152. 8. Frege G. Buleva vychislitel’naya logika i moe ischislenie ponyatiy [Boole’s Logical Calculus and My Concept-Script]. Frege G. Logika i logicheskaya semantika [Logic and Logical Semantics]. Moscow, 2000, pp. 158–193. 9. Frege G. Chto takoe funktsiya? [What Is a Function?]. Frege G. Logika i logicheskaya semantika [Logic and Logical Semantics]. Moscow, 2000, pp. 277–283. 10. Frege G. Funktsiya i ponyatie [Function and Concept]. Frege G. Logika i logicheskaya semantika [Logic and Logical Semantics]. Moscow, 2000, pp. 215–229. 11. Biryukov B.V. O vzglyadakh G. Frege na rol’ znakov i ischisleniya v poznanii [G. Frege’s Views on the Role of Signs and Calculus in Cognition]. Tavanets P.V. (ed.). Logicheskaya struktura nauchnogo znaniya [The Logical Structure of Scientific Knowledge]. Moscow, 1965, pp. 91–108. 12. Borisova O.A. K voprosu ob ontologii G. Frege [On G. Frege’s Ontology]. Sovremennaya logika: problemy teorii, istorii i primeneniya v nauke [Modern Logic: Issues of Theory, History and Application in Science]. St. Petersburg, 2000, pp. 436–439. 13. Nikolko V.N. Opyt postroeniya formal’noy sistemy opredeleniy [The Experience of Constructing the Formal System of Definitions]. Uchenye zapiski Krymskogo federal’nogo universiteta imeni V.I. Vernadskogo. Ser.: Filosofiya. Politologiya. Kul’turologiya, 2017, vol. 3, no. 1, pp. 126–132. 14. Couturat L. Algebre de la logique. 1965 (Russ. ed.: Kutyura L. Algebra logiki. Moscow, 2012. 128 p.). 15. Uspenskiy V.A. Mashina Posta [Post–Turing Machine]. Moscow, 1988. 96 p. 16. Łukasiewicz J. Aristotle’s Syllogistic from the Standpoint of Modern Formal Logic. Oxford, 1951. 141 p. (Russ. ed.: Lukasevich Ya. Aristotelevskaya sillogistika s tochki zreniya sovremennoy formal’noy logiki. Moscow, 1959. 313 p.). 17. Yablonskiy S.V., Gavrilov G.P., Kudryavtsev V.B. Funktsii algebry logiki i klassy Posta [Boolean Algebra Functions and Post’s Classes]. Moscow, 1966. 120 p. 18. Nikolko V.N. Formulirovka osnovnoy teoremy aristotelevskoy sillogistiki [Formulation of the Key Theorem of Aristotelian Syllogistic]. Filosofskiy tekst v sovremennoy tekstovoy kul’ture [Philosophical Text in Modern Textual Culture]. Simferopol, 2018, pp. 175–177. |
Make a Submission
INDEXED IN:
|