CC..png   

Legal and postal addresses of the publisher: office 1336, 17 Naberezhnaya Severnoy Dviny, Arkhangelsk, 163002, Russian Federation, Northern (Arctic) Federal University named after M.V. Lomonosov

Phone: (818-2) 21-61-21, ext. 18-20
E-mail: vestnik_gum@narfu.ru
https://vestnikgum.ru/en/

ABOUT JOURNAL

Teaching the Fundamentals of Mathematical Information Processing: Content. P. 164–172

Версия для печати

Section: Pedagogics. Psychology

Download (pdf, 2.5MB )

UDC

378.147:519.72

Authors

Kostyuchenko Roman Yuryevich
Omsk State Pedagogical University (Omsk, Russia)

Abstract

The paper dwells on the content of teaching the course “Fundamentals of mathematical information
processing” to students of various specialities. The author examines both the axiomatic and mathematical
modelling methods as the main mathematical and general scientific ways of knowing. The author
supposes that these two methods predetermine both the application of mathematics in other sciences
and the content of teaching students to use these methods in their work. Therefore, having analyzed
scientific and methodical literature and using examples, the author shows that students should be taught
to: 1) analyze existing mathematical models; 2) create and analyze new mathematical models and
interpret the obtained solutions; 3) study the methods of mathematics itself to make right decisions when
working with created models. The main ideas and methods should be taught starting from simple and
clear examples, gradually coming to solving specific professional tasks.

Keywords

fundamentals of mathematical information processing, axiomatic method, mathematical modelling

References

  1. Aksiomatika i aksiomaticheskiy metod [Axiomatics and the Axiomatic Method]. Entsiklopedicheskiy slovar’ yunogo matematika [Young Mathematician’s Thesaurus]. Comp. by Savin A.P. Moscow, 1989, pp. 10–13. 
  2. Bavrin I.I. Kratkiy kurs vysshey matematiki dlya khimiko-biologicheskikh i meditsinskikh spetsial’nostey [A Concise Course in Higher Mathematics for Chemical-Biological and Medical Specialities]. Moscow, 2003. 328 p. 
  3. Boltyanskiy V.G., Savin A.P. Besedy o matematike. Kn. 1. Diskretnye ob”ekty [Discussing Mathematics. Book 1. Discrete Objects]. Moscow, 2002. 368 p. 
  4. Vvedenie v matematicheskoe modelirovanie [Introduction to Mathematical Modelling]. Ed. by Trusov V.P. Moscow, 2005. 440 p. 
  5. Voloshinov A.V. Matematika i iskusstvo [Mathematics and Art]. Moscow, 2000. 339 p. 
  6. Dalinger V.A., Kostyuchenko R.Yu. Analogiya v geometrii [Analogy in Geometry]. Omsk, 2001. 149 p. 
  7. Dalinger V.A., Simonzhenkov S.D. Modelirovanie s pomoshch’yu differentsial’nykh uravneniy [Modelling by Means of Differential Equations]. Omsk, 2008. 43 p. 
  8. Episheva O.B. Obshchaya metodika obucheniya matematike v sredney shkole [General Methods of Teaching Mathematics at a Secondary School]. Tobolsk, 2008. 203 p. 
  9. Kokhanovskiy V.P. Filosofiya i metodologiya nauki [Philosophy and Methodology of Science]. Rostov-on-Don, 1999. 576 p. 
  10. Laboratornye i prakticheskie raboty po metodike prepodavaniya matematiki [Laboratory and Practical Work on Methodology of Teaching Mathematics]. Ed. by Lyashchenko E.I. Moscow, 1988. 223 p. 
  11. Matematicheskoe modelirovanie [Mathematical Modelling]. Ed. by Endryus Dzh., Mak-Loun R. Moscow, 1979. 277 p. 
  12. Myshkis A.D. Elementy teorii matematicheskikh modeley [Elements of the Theory of Mathematical Models]. Moscow, 2007. 192 p. 
  13. Rvanova A.S. Proektirovanie i realizatsiya tselevogo i soderzhatel’nogo komponentov elektivnykh kursov dlya klassov matematicheskogo profilya na osnove lokal’noy aksiomatizatsii: dis. … kand. ped. nauk [Design and Implementation of Target and Content Components of Elective Courses for Mathematical Classes Based on Local Axiomatization: Cand. Pedag. Sci. Diss.]. Omsk, 2006. 183 p. 
  14. Sadovskiy V.N. Aksiomaticheskiy metod postroeniya matematicheskogo znaniya [Axiomatic Method for Forming Mathematical Knowledge]. Filosofskie voprosy sovremennoy formal’noy logiki [Philosophical Issues of Modern Formal Logic]. Moscow, 1962, pp. 215–262. 
  15. Samarskiy A.A., Mikhaylov A.P. Matematicheskoe modelirovanie: Idei. Metody. Primery [Mathematical Modelling: Ideas. Methods. Examples]. Moscow, 2005. 320 p. 
  16. Sarantsev G.I. Obuchenie matematicheskim dokazatel’stvam v shkole [Teaching Mathematical Proofs at School]. Moscow, 2000. 173 p. 
  17. Stolyar A.A. Logicheskie problemy prepodavaniya matematiki [Logical Problems of Teaching Mathematics]. Minsk, 1965. 254 p. 
  18. Stolyar A.A. Pedagogika matematiki [Mathematical Pedagogy]. Minsk, 1986. 414 p. 
  19. Teoriya i tekhnologiya obucheniya matematike v sredney shkole [Theory and Technology of Teaching Mathematics at a Secondary School]. Ed. by Ivanova T.A. Nizhny Novgorod, 2009. 355 p. 
  20. Uspenskiy V.A. Chto takoe aksiomaticheskiy metod? [What Is the Axiomatic Method?]. Izhevsk, 2001. 96 p.

Make a Submission


знак_анг.png

INDEXED IN:      

Elibrary.ru

infobaseindex

logotype.png


Логотип.png


Лань

OTHER NArFU JOURNALS: 

Journal of Medical and Biological
Research

Forest Journal 
obl_les2023.jpg 

Arctic and North  

AiS.jpg