CC..png

16plus.png

Юридический и почтовый адрес учредителя и издателя: САФУ им. М.В. Ломоносова, наб. Северной Двины, д. 17, г. Архангельск, Россия, 163002
Адрес редакции: «Вестник САФУ. Серия "Гуманитарные и социальные науки"», ул. Урицкого, 56, г. Архангельск

Тел: (818-2) 21-61-00, вн. 18-20 
Сайт: https://vestnikgum.ru
e-mail: vestnik_gum@narfu.ru              

о журнале

Pollination and pollen germination in common juniper (Juniperus communis: Cupressaceae). P. 162–174

Версия для печати

Section: Biology

Download (pdf, 2.4MB )

UDC

581.162.41:582.477.6

DOI

10.3897/issn2541-8416.2018.18.4.162

Authors

MV Surso1
1 Federal Research Centre of Complex Studying of Arctic Regions of the Russian Academy of Sciences (Arkhangelsk, Russian Federation)
Corresponding author: Mikhail Surso (surso@fciarctic.ru)

Abstract

Pollination and fertilization are the most important and responsible stages in sexual reproduction of coniferous plants. The period of high concentrations of juniper pollen in overhead during pollination period is no more than 4–6 hours and within one calendar day. This dependence remains invariable from year to year, and does not depend neither from weather conditions, nor the peculiarities of the place where juniper grows. Influence of external agents on dynamics of exudation of a juniper pollination droplet is studied. The duration of exudation and volume of secretory liquid exuded by tissues of ovules during the period of prescription in the juniper depend from presence of external agents on a surface of pollination droplet, their sizes and physical and chemical properties. The pollination droplet chemical compound is studied. In sugars composition of juniper pollination droplet there are only two monosaccharides: glucose and galactose. the amino acids composition is prevailed by arginine, aspartic and glutamic acids. The results of the studies confirm complex chemical composition and multifunctionality of juniper pollination droplet. The pollination mechanism of juniper is effective and selective. The morphological structure of pollen grains of juniper predetermines the processes of pollen germination at early stages. The hydrophilic capsule, formed pollen hydration, promotes to exine rupture and shedding. This capsule remains until the fertilization. The distal tip of pollen tube remains in itduring all time of its growth. In culture in vitro development of pollen tubes of juniper proceeds non-uniformly. At definition of juniper pollen viability it is necessary to consider a stage of pollen tubes development.

Keywords

common juniper, pollination, pollination droplet, ovules, pollen grains, pollen tubes

References

  1. Altintaş DU, Karakoç GB, Yilmaz M, Pinar M, Kendirli SG, Çakan H (2004) Relantionship between pollen counts and weather variables in East-Mediterranean coast of Turkey: Clinical and Developmental Immunology 11(1): 87–96. https://doi.org/10.1080/10446670410001670544
  2. Anderson TD, Owens JN (2000) Microsporogenesis, pollination, pollen germination and male gametophyte development in Taxus brevifolia Annals of Botany 86(5): 1033–1042. https://doi.org/10.1006/anbo.2000.1274
  3. Belmonte J, Canela M, Guardia R, Guardia RA, Sbai L, Vendrell M, Cariñanos P, Diaz de la Guardia C, Dopazo A, Fernandez D, Gutierres M, Trigo MM (1999) Aerobiological dynamics of the Cupressaceae pollen in Spain 1992–98. Polen 10(27): 27–38. http://lap.uab.cat/aerobiologia/general/pdf/polen10/cupresaceae2.pdf
  4. Bortenschlager S (1990) Aspects of pollen morphology in the Cupressaceae. Grana 29(2): 129–138. https://doi.org/10.1080/00173139009427743
  5. Diaz de la Guardia C, Alba F, de Linares C, Nieto-Lugilde D, Lopez Caballero J (2006) Aerobiological and allergenic analysisof Cupressaceae pollen in Granada (Southern Spain). Journal of Investigational Allergology and Clinical Immunology 16(1): 24–33. http://hdl.handle.net/10481/32708
  6. Doyle J (1945) Developmental lines in pollination mechanisms in the Coniferales. The Scientific proceedings of the Royal Dublin Society 24(5): 43–62.
  7. Duhoux E (1972a) Structural growth of the wall of the pollen grain of Juniperus communis (Cupressaceae), growth in vitro during the hydratation phase. Comptes Rendus Des Seanses Hebdomadaires De L’Academie Des Sciences, France, D 274(20): 2767–2770.
  8. Duhoux E (1972b) Formation of the cell wall of the pollen tube during germination of pollen in Juniperus communis growth in vitro. Comptes Rendus Des Seanses Hebdomadaires De L’Academie Des Sciences, France, D 274(24): 3238–3241.
  9. Duhoux E (1974) The division of the reproductive cell and the release of its products in the pollen tubes of Juniperus communis and Cupressus arizonica. Revue Generale De Botanique 81(962/963/964): 193–204.
  10. Duhoux E (1982) Mechanism of exine rupture in hydrated taxoid typeof pollen. Grana 21(1): 1–7. https://doi. org/10.1080/00173138209427673
  11. Dumas C, Bowman RB, Gaude T, Guilly CM, Heizmann P, Roecke P, Rougier M (1988) Stigma and stigmatic secretion reexamined. Phyton 28(2): 193–200.
  12. Fernando DD, Lazzaro MD, Owens JN (2005) Growth and development of conifer pollen tubes. Sexual Plant Reproduction 18(4): 149–162. https://doi.org/10.1007/s00497-005-0008-y
  13. Friedman J, Barrett SCH (2009) Wind of change: new insights on the ecology and evolution of pollination and mating of wind-pollinated plants. Annals of Botany 103(9): 1515–1527. https://doi.org/10.1093/aob/mcp035
  14. Gelbart G, von Aderkas P (2002) Ovular secretions as part of pollination mechanisms in conifers. Annals of Forest Science 59(4): 345–357. https://doi.org/10.1051/forest:2002011
  15. Ianovici N, Panaitescu CB, Brudiu I (2013) Analysis of airborne allergenic pollen spectrum for 2009 in Timişoara, Romania. Aerobiologia 29(1): 95–111. https://doi.org/10.1007/s10453-012-9266-y
  16. Labandeira CC, Kvaček J, Mostovski MH (2007) Pollination drops, pollen, and insect pollination of Mesozoic gymnosperms. Taxon 56(3): 663–695. https://doi. org/10.2307/25065853
  17. Kurmann MH (1994) Pollen morphology and ultrastructure in the Cupressaceae. Acta Botanica Gallica 141(2): 141–147. https://doi.org/10.1080/12538078.1994.10515147
  18. McWilliam JR (1958) The role of the micropyle in the pollination of Pinus. Botanical Gazette 120(2): 109–117. https://doi. org/10.1086/336010
  19. Mugnaini S, Nepi M, Guarnieri M, Piotto B, Pacini E (2007a) Pollination drop withdrawal in Juniperus communis: response to biotic and abiotic particles. Caryologia 60(1–2): 182–184. http://www.caryologia.unifi.it/past_volumes/60_1_2/60_1_sbi21.pdf
  20. Mugnaini S, Nepi M, Guarnieri M, Piotto B, Pacini E (2007b) Pollination drop in Juniperus communis: Response to Deposited Material. Annals of Botany 100(7): 1475–1481. https://doi. org/10.1093/aob/mcm253
  21. Necib A, Boughediri L (2016) Airborne pollen in the El-Hadjar town (Algeria NE). Aerobiologia 32(2): 277–288. https:// doi.org/10.1007/s10453-015-9398-y
  22. Nepi M, von Aderkas P, Wagner R, Mugnaini S, Coulter A, Pacini E (2009) Nectar and pollination drops: how different are they? Annals of Botany 104(2): 205–219. https://doi. org/10.1093/aob/mcp124
  23. Nikkanen T (2001) Reproductive phenology in a Norway spruce seed orchard. Silva Fennica 35(1): 39–53. https://doi. org/10.14214/sf.602
  24. Nikkanen T, Pakkanen A, Heinonen J (2002) Temporal and spatial variation in airborne pollen and quality of the seed crop in a Norway spruce seed orchard. Forest Genetics 9(3): 243–255. http://www.tuzvo.sk/files/fg/volumes/2002/FG09–3_243–255.pdf
  25. O’Leary SJB (1998) Proteins in the Ovular Secretions of Conifers. PhD Thesis, St. Francis Xavier University, USA, 190 pp.
  26. Owens JN, Simpson SJ, Caron GE (1987) The pollination mechanism of Engelmann spruce (Picea engelmanii). Canadian Journal of Botany 65(7): 1439–1450. https://doi. org/10.1139/b87-199
  27. Owens JN, Takaso T, Runions CJ (1998) Pollination in conifers. Trends in Plant Science 3(12): 479–485. https://doi. org/10.1016/S1360-1385(98)01337-5
  28. Poulis BAD, O’Leary SJB, Haddow JD, von Aderkas P (2005) Identification of proteins present in the Douglas fir ovular secretion: an insight into conifer pollen selection and development. International Journal of Plant Sciences 166(5): 733–739. https://doi.org/10.1086/431808
  29. Puljak T, Mamić M, Mitić B, Hrga I, Hruševar D (2016) First aerobiological study in Mediterranean part of Croatia (Dalmatia): pollen spectrum and seasonal dynamics in the air of Split. Aerobiologia 32(4): 709–723. https://doi.org/10.1007/s10453-016-9444-4
  30. Rogers CA, Levetin E (1998) Evidence of long-distance transport of mountain cedar pollen into Tulsa, Oklahoma. International Journal of Biometeorology 42(2): 65–72. https://doi.org/10.1007/s004840050086
  31. Sabariego S, Cuesta P, Fernández-González F, Pérez-Badia R (2012) Models for forecasting airborne Cupressaceae pollen levels in central Spain. International Journal of Biometeorology 56(2): 253–258. https://doi.org/10.1007/s00484-011-0423-8
  32. Schwendemann AB, Wang G, Mertz ML, McWilliams RT, Thatcher SL, Osborn JM (2007) Aerodynamics of saccate pollen and its implications for wind pollination. American Journal of Botany 94(8): 1371–1381. https://doi.org/10.3732/ ajb.94.8.1371
  33. Southworth D (1986) Pollen exine substructure III. Juniperus communis. Canadian Journal of Botany 64(5): 983–987. https://doi.org/10.1139/b86-132
  34. Takaso T, Owens JN (2008) Significance of exine shedding in Cupressaceae-type pollen. Journal of Plant Research 121: 83–85. https://doi.org/10.1007/s10265-007-0135-7
  35. Wagner RE, Mugnaini S, Sniezko R, Hardie D, Poulis B, Nepi M, Pacini E, von Aderkas P (2007) Proteomic evaluation of gymnosperm pollination drop proteins indicates highly conserved and complex biological functions. Sexual Plant Reproduction 20(4): 181–189. https://doi.org/10.1007/s00497-007-0054-8
  36. Willar M, Knox RB, Dumas C (1984) Effective pollination period and nature of pollen-collecting apparatus in the Gymnosperm, Larix leptolepis. Annals of Botany 53(2): 279–284. https://doi.org/10.1093/oxfordjournals.aob.a086689
  37. Williams CG (2008) Aerobiology of Pinus taeda pollen clouds. Canadian Journal of Forest Research 38(8): 2177–2188. https://doi.org/10.1139/X08-062