CC..png

16plus.png

Юридический и почтовый адрес учредителя и издателя: САФУ им. М.В. Ломоносова, наб. Северной Двины, д. 17, г. Архангельск, Россия, 163002
Адрес редакции: «Вестник САФУ. Серия "Гуманитарные и социальные науки"», ул. Урицкого, 56, г. Архангельск

Тел: (818-2) 21-61-00, вн. 18-20 
Сайт: https://vestnikgum.ru
e-mail: vestnik_gum@narfu.ru              

о журнале

Mathematical Modelling of Transport Processes for Various Regimes of Rarefied Gas Flow in the Channel. P. 124–128

Версия для печати

Section: Physics. Mathematics. Informatics

Download (pdf, 3MB )

UDC

533.72

Authors

Lukashev Vyacheslav Valeryevich
Institute of Mathematics, Information and Space Technologies, Northern (Arctic) Federal University named after M.V. Lomonosov (Arkhangelsk, Russia)
e-mail: v.lukashev@narfu.ru
Popov Vasily Nikolaevich
Institute of Mathematics, Information and Space Technologies, Northern (Arctic) Federal University named after M.V. Lomonosov (Arkhangelsk, Russia)
e-mail: v.popov@narfu.ru

Abstract

In this paper we obtained asymptotic expressions describing mass flows of gas and heat for various regimes of rarefied gas flow in the channel with the temperature gradient parallel to the walls. As original relations we use the results obtained by the authors within the framework of the kinetic approach, based on the solution of the linearized BGK (Bhatnagar, Gross, Krook) model of Boltzmann kinetic equation using diffuse reflection boundary condition on the channel walls. For various tangential momentum accommodation coefficients of gas molecules during their interaction with the channel walls, we studied the transition to the hydrodynamic regime and regime close to the free-molecular one. We proved the existence of a special regime of gas flow in the channel, when, despite the vanishingly small Knudsen number, the gas flow regime differs significantly from the hydrodynamic one. Further, we identified the conditions for transition to this gas flow regime, determined the range of applicability for the obtained asymptotic expressions and compared the obtained results with the similar published ones.

Keywords

Boltzmann kinetic equation, model kinetic equations, exact analytical solutions, models of boundary conditions

References

  1. Latyshev A.V., Yushkanov A.A. Analiticheskie resheniya granichnykh zadach dlya kineticheskikh uravneniy [Analytical solutions of Boundary Value Problems for Kinetic Equations]. Moscow, 2004. 286 p.
  2. Lukashev V.V., Popov V.N., Yushkanov A.A. Matematicheskoe modelirovanie protsessov teplo- i massoperenosa v zadache o teplovom kripe [Mathematical Modelling of Heat and Mass Transfer in the Thermal Creep Problem]. Spektral’naya teoriya operatorov i ee prilozheniya: materialy vseros. nauch. konf. s mezhdunar. uchastiem [Spectral Operator Theory and Its Applications: Proc. All-Russian Sci. Conf. with Int. Participation]. Arkhangelsk, 25–29 November 2012. Arkhangelsk, 2012, pр. 66–70.
  3. Popov V., Testova I., Yushkanov A. Matematicheskoe modelirovanie techeniy gaza v kanalakh [Mathematical Modelling of Gas Flows in Channels]. Saarbrücken, 2012. 116 р.
  4. Sharipov F.M., Seleznev V.D. Dvizhenie razrezhennykh gazov v kanalakh i mikrokanalakh [Rarefied Gas Movement in Channels and Microchannels]. Yekaterinburg, 2008. 230 p.
  5. Barichello L.B., Camargo M., Rodrigues P., Siewert C.E. Unified Solutions to Classical Flow Problems Based on the BGK Model. ZAMP, 2001, vol. 52, pp. 517–534.
  6. Siewert C.E. Poiseuille, Thermal Creep and Couette Flow: Results Based on the CES Model Linearized Boltzmann Equation. European Journal of Mechanics – B/Fluids, 2002, vol. 21, pp. 579–597.
  7. Siewert C.E. The Linearized Boltzmann Equation: Concise and Accurate Solutions to Basic Flow Problems. ZAMP, 2003, vol. 54, pp. 273–303.