
Вестник Северного (Арктического) федерального университета. Серия «Гуманитарные и социальные науки»
ISSN 2227-6564 e-ISSN 2687-1505 DOI:10.37482/2687-1505
![]()
Юридический и почтовый адрес учредителя и издателя: САФУ им. М.В. Ломоносова, наб. Северной Двины, д. 17, г. Архангельск, Россия, 163002
Тел: (818-2) 21-61-00, вн. 18-20 о журнале |
Рубрика: Физика, Математика, Информатика Скачать статью (pdf, 1.1MB )УДК517.927Сведения об авторахТ.А. Сафонова*, С.В. Рябченко**Северный (Арктический) федеральный университет имени М.В. Ломоносова Контактное лицо: Сафонова Татьяна Анатольевна, адрес: 163002, г. Архангельск, наб. Северной Двины, д. 17; e-mail: t.Safonova@narfu.ru АннотацияВопросы об асимптотике собственных значений и собственных функций в зависимости от коэффициентов дифференциального выражения, а также о получении формул регуляризованного следа для соответствующих операторов являются весьма актуальными в современной спектральной теории дифференциальных операторов. В случае оператора Штурма–Лиувилля с непрерывно-дифференцируемым потенциалом основные результаты были получены И.М. Гельфандом и Б.М. Левитаном в работе 1953 года. Позднее в работах Л.А. Дикого, В.А. Садовничего, В.Б. Лидского, В.А. Марченко и других математиков эти результаты были обобщены на случай дифференциальных операторов высших порядков и операторов в частных производных. Для оператора Штурма–Лиувилля с сингулярным потенциалом, не являющимся локально интегрируемой функцией, и краевых условий Дирихле на конечном интервале аналогичные вопросы впервые были рассмотрены А.А. Шкаликовым и А.М. Савчуком в работах 1999–2003 годов. В сравнительно недавних работах А.Г. Костюченко и С.Р. Исмагилова (2007–2008 годы) был получен главный член асимптотики считающей функции для самосопряженных расширений векторного оператора Штурма–Лиувилля, порожденного выражением l[y]=‑y′′(x)+Q(x)y(x) в пространстве L22(R+), где Q(x) – вещественная симметрическая квадратная матрица второго порядка. Данная работа посвящена нахождению трансцендентных уравнений для собственных значений самосопряженного оператора с сингулярным потенциалом. Дальнейший анализ полученных уравнений позволяет найти асимптотику собственных значений и формулу регуляризованного следа первого порядка рассмотренных операторов.Ключевые словаквазипроизводная, оператор Штурма–Лиувилля с сингулярным потенциалом, собственные значенияСписок литературы
|