МЕДИКО-БИОЛОГИЧЕСКИЕ НАУКИ

УДК 611.018.1:612.017.1(98)

ЩЁГОЛЕВА Любовь Станиславовна, доктор биологических наук, профессор, заведующая лабораторией физиологии иммунокомпетентных клеток, директор Института физиологии природных адаптаций Уральского отделения РАН. Автор 192 научных публикаций, в т. ч. 10 монографий

СЕРГЕЕВА Татьяна Борисовна, и. о. научного сотрудника лаборатории физиологии иммунокомпетентных клеток Института физиологии природных адаптаций Уральского отделения РАН. Автор 20 научных публикаций

СОДЕРЖАНИЕ КЛЕТОК CD8⁺ И CD16⁺ У ЖИТЕЛЕЙ РАЗНЫХ ВОЗРАСТНЫХ ГРУПП, ПРОЖИВАЮЩИХ В АРКТИЧЕСКОЙ ЗОНЕ*

Цитотоксические лимфоциты (CD8+, CD16+) определяют клеточно-опосредованную цитотоксическую активность в физиологических реакциях иммунного гомеостаза на Севере европейской территории России. У лиц до 40 лет содержание цитотоксических лимфоцитов более высокое, чем у старшей возрастной группы, и связано с процессами дифференцировки Т-клеток, лимфопролиферации и апоптоза. Установлено, что повышенное содержание клеток CD8+ и CD16+ требуется для поддержания иммунного гомеостаза, ассоциируется с дефицитом фагоцитарной активности зрелых функционально активных CD3+ клеток, с повышенным уровнем лимфопролиферации CD10+, апоптоза CD95+ на фоне снижения активности процессов дифференцировки иммунокомпетентных клеток и повышения клеточно-опосредованной цитотоксичности. У северян 19-40 лет распространены повышенные значения лимфопролиферации (CD10⁺), естественных киллеров (CD16+) и супрессоров-киллеров (CD8+). Выявлен дефицит Т-клеток и клеток с рецепторами к трансферрину (CD71+). У лиц старшей возрастной группы 41-60 лет отмечена частота пониженных концентраций CD8+ и CD16+, особенно у женщин; она ассоциирована с повышением активности В-клеточного звена (HLA-DR⁺), повышением концентраций CD71⁺ и низким уровнем апоптоза (CD95⁺). Установлено, что у северян с возрастом содержание клеток CD8⁺ и CD16⁺ в периферической крови, а также частота регистрации их повышенных уровней снижается; р < 0,01. Лимфоидные субпопуляции супрессоров-киллеров CD8⁺ и естественных киллеров CD16⁺ выполняют компенсаторную и защитную роль. Полученные данные о физиологической значимости содержания цитотоксических лимфоцитов (CD8+, CD16+) в периферической крови у северян дополняют современные представления о физиологических механизмах у лиц, проживающих на севере европейской территории РФ.

Ключевые слова: цитотоксические лимфоциты, *Т-хелперы*, естественные киллеры, возрастная иммунология.

^{*}Работа выполнена при финансовой поддержке Уральского отделения РАН, грант № 12-У-4-1021, проекта фундаментальных исследований «Арктика» № 12-4-5-025-АРКТИКА.

[©] Щёголева Л.С., Сергеева Т.Б., 2015

Дискомфортный климат Севера формирует своеобразный региональный уровень жизнеобеспечения у северян, целесообразный в конкретных условиях. С возрастом развивается дисбаланс в содержании Т-клеток и иммуноглобулинов, что снижает иммунную защиту у лиц старшей возрастной группы [1–3].

Иммунологическая реактивность северян характеризуется повышенным уровнем иммуносупрессии, что свидетельствует об активизации клеточных и гуморальных механизмов иммунитета. В результате неэффективности супрессорного звена появляются и увеличиваются концентрации циркулирующих иммунных комплексов и аутоантител [4-7]. В условиях выраженного иммунодефицита Т-клеток указанные процессы в полной мере реализуют воздействие на организм клеточно-опосредованной цитотоксичности [8]. Однако сведений о возможной иммуностимулирующей роли клеточно-опосредованной цитотоксичности нет. Единичные сведения о механизмах, через которые цитотоксические лимфоциты (ЦТЛ) способны стимулировать клеточный и гуморальный иммунный ответ, влиять на содержание провоспалительных и противовоспалительных цитокинов, немногочисленны и противоречивы [9–11].

С возрастом не ко всем условиям можно безболезненно адаптироваться, долговременные затраты на адаптацию усугубляют иммунологический дисбаланс и сокращают резервные возможности иммунного гомеостаза [12, 13]. В связи с этим крайне важно оценить физиологическую роль цитотоксических клеток CD8+ и CD16+ в механизме иммунного ответа у лиц разных возрастных групп.

Материалы и методы. Нами получены результаты обследования 180 чел., жителей пос. Пинега Архангельской области и пос. Несь Ненецкого автономного округа разных возрастов: 78 чел. 19–40 лет (47 женщин и 31 мужчина) и 102 чел. 41–60 лет (73 женщины и 29 мужчин).

Кровь для исследования брали из локтевой вены в объеме 6 мл в 9-10 ч утра натощак. Забор крови осуществляли в вакутайнеры с литий-гепарином фирмы «IMPROVACUTER».

Комплекс иммунологических исследований крови включал определение фенотипов лимфоцитов (CD3+, CD4+, CD5+, CD8+, CD10+, CD16+, CD71+, CD95+, HLA-DR+, CD20+). Фенотипирование лимфоцитов проводили с использованием непрямой иммунопероксидазной реакции с применением моноклональных антител (научно-производственный центр «МедБиоСпектр» и ООО «Сорбент», г. Москва) на препаратах лимфоцитов типа «высушенная капля».

Проверку нормальности распределения количественных показателей осуществляли при помощи критерия Шапиро-Уилка. Для оценки полученных данных использовали методы описательной статистики с определением средней арифметической величины (М), величины средней ошибки (m), минимальных и максимальных значений, а также стандартного отклонения. Уровень дисбалансов иммунологических показателей рассчитывался по данным частоты регистрации повышенных и пониженных концентраций относительно нормативных пределов физиологических колебаний. Статистическую значимость различий между выборками выявляли при помощи t-критерия Стьюдента и с использованием непараметрических методов – Крускала-Уоллиса и Манна-Уитни; различия сравниваемых показателей принимались достоверными при уровне значимости p < 0.05 - 0.001.

Результаты и обсуждение. Представляло интерес изучение концентрации CD8⁺ и CD16⁺ на фоне фенотипов лимфоцитов, которые отражают уровни лимфопролиферации, хелперной активности, процессов дифференцировки иммунокомпетентных клеток в зависимости от уровней активизации клеток с рецепторами к антигенам гистосовместимости II класса и IL-2, а также в зависимости от фагоцитарной активности у лиц разных возрастных групп, проживающих в Арктической зоне. Неблагоприятные и жесткие условия внешней среды Европейского Севера оказывают влияние на состояние здоровья и процессы адаптации человека [14]. Установлено, что на Севере выше супрессорная и киллерная активность иммунокомпетентных клеток, чаще встречается дефицит IgA (40 %), дефицит фагоцитарной защиты (60 %), высокие уровни лимфопролиферации (70 %) [15].

Известно, что цитотоксическая клеточноопосредованная активность (CD8+, CD16+) выражена у всех северян, особенно работающих вахтовым методом, в отличие от жителей средней полосы. Профессиональные нагрузки и неблагоприятное экологическое воздействие на организм человека усиливаются экстремальными условиями Севера и, вероятно, усугубляются социально-бытовыми условиями: у жителей средней полосы климатические условия и повышенный уровень комфортности, возможно, нивелируют негативную экологическую нагрузку [16, 17].

Установлено, что у людей в возрасте 19–40 лет содержание зрелых Т-лимфоцитов (CD3+) составляет в среднем $0.51\pm0.05\cdot10^9$ кл/л. Количество Т-лимфоцитов СD5+ в среднем - $0.52\pm0.05\cdot10^9$ кл/л, аномально низкое содержание зрелых функционально активных клеток CD3⁺ и клеток CD5⁺ зарегистрировано у 91,90 и 100,00 % обследованных лиц без выявленной разницы по полу. Среднее содержание малодифференцированных клеток CD10⁺ – $0.49\pm0.05\cdot10^9$ кл/л, причем у женщин оно выше, чем у мужчин $(0.53\pm0.04\cdot10^9 \text{ и } 0.45\pm0.05\cdot10^9$ кл/л соответственно, р < 0,001). Повышение уровня содержания лимфоцитов CD10⁺ регистрировалось в 57,33 % случаев с достоверной разницей у женщин и мужчин (31,91 и 16,13 % соответственно, р < 0,05). Пониженных значений данного параметра зафиксировано не было (см. таблицу).

Аналогичные данные были получены у возрастной группы 41–60 лет. Содержание зрелых Т-лимфоцитов (CD3+) в среднем – $0,50\pm0,05\cdot10^9$ кл/л ($0,47\pm0,03\cdot10^9$ и $0,53\pm0,06\cdot10^9$ кл/л соответственно у мужчин и женщин). Количество лимфоцитов с рецепторами CD5+ составило $0,50\pm0,05\cdot10^9$ кл/л ($0,49\pm0,03\cdot10^9$ и $0,51\pm0,06\cdot10^9$ кл/л соответственно). При этом количество клеток CD3+ и CD5+ у женщин меньше, чем у мужчин (р < 0,001). Дефицит зрелых функционально активных клеток CD3+ зарегистрирован

СРЕДНИЕ ДАННЫЕ ПОКАЗАТЕЛЕЙ ИММУННОГО СТАТУСА, p < 0,001

Показа- тели	19–40 лет, n = 78, 10 ⁹ кл/л	41–60 лет, n = 102, 10 ⁹ кл/л
CD3 ⁺	0,51±0,05	0,50±0,05
CD4 ⁺	0,52±0,05	0,51±0,04
CD5 ⁺	0,52±0,05	0,50±0,05
CD8 ⁺	0,51±0,05	0,48±0,05
CD10 ⁺	$0,49\pm0,05$	$0,46\pm0,04$
CD16 ⁺	0,52±0,04	0,51±0,05
CD71 ⁺	$0,49\pm0,05$	0,53±0,05
CD95 ⁺	0,51±0,05	0,53±0,05
CD20+	0,51±0,05	0,51±0,05
HLA-DR ⁺	$0,49\pm0,04$	0,49±0,05

у 89,41 % обследованных (96,05 и 82,76 % соответственно), а дефицит клеток CD5⁺ – в 99,34 % случаев (98,68 и 100,00 % соответственно). Повышенные значения содержания клеток CD3⁺ имеют лишь в 1,32 % обследованных, причем только женщины. Повышенных значений клеток CD5⁺ зафиксировано не было. Содержание лимфоцитов с рецепторами CD10⁺ в среднем – $0,46\pm0,04\cdot10^9$ кл/л. Уровень содержания лимфоцитов CD10⁺ выше среднего характеризует значительную лимфопролиферацию у жителей Европейского Севера в возрасте 41–60 лет. Указанное явление было отмечено у 25,13 % обследуемых лиц, в т. ч. у женщин 22,67 % и 27,59 % у мужчин.

Анализ уровня концентраций клеток хелперов/индукторов (CD4⁺) у обследуемой группы 19–40 лет показал, что данный показатель находится в пределах общепринятых физиологических норм $(0.52\pm0.05\cdot10^9~\text{кл/л})$, существенно не различаясь по полу. Абсолютно низкие концентрации CD4⁺ выявлены в 46,99 % случаев, достоверно чаще у мужчин (у женщин – 39,13 %, у мужчин – 54,84 %, р < 0,001). Повышенные значения были зарегистрированы у 15,68 % обследуемых.

Анализ уровня содержания клеток CD8⁺ показал, что у возрастной группы 19–40 лет оно составляет $0.51\pm0.05\cdot10^9$ кл/л с небольшой достоверной разницей по полу (0.56 ± 0.04) и $0.45\pm0.05\cdot10^9$ кл/л соответственно у женщин

и мужчин, р < 0,001). Пониженные уровни цитотоксических лимфоцитов $CD8^+$ встречались лишь у 7,02 % лиц. Повышенные значения этого параметра встречались в 57,33 % случаев, чаще у женщин, чем у мужчин (63,04 и 51,61 % соответственно).

Уровень содержания CD16⁺ в среднем составляет $0.52\pm0.04\cdot10^9$ кл/л, причем у женщин он достоверно выше, чем у мужчин $(0.56\pm0.03\cdot10^9$ и $0.45\pm0.04\cdot10^9$ кл/л, р < 0.001). В наших исследованиях пониженное содержание клеток CD16⁺ было зафиксировано у 12.36 % обследуемых возрастной группы 19—40 лет, причем у женщин достоверно реже, чем у мужчин (2.13 и 22.58 % соответственно, р < 0.05). Распространение высоких средних значений естественных киллеров (CD16⁺) отмечается в 43.79 % случаев с достоверной разницей по полу (у женщин 55.32 %, и у мужчин 32.26 %, р < 0.01).

Выявили, что у возрастной группы 41-60 лет среднее содержание Т-лимфоцитов хелперов/ин-CD4⁺ составляет дукторов среднем $0.51\pm0.04\cdot10^9$ кл/л; у мужчин оно выше, чем у женщин $(0.46\pm0.03\cdot10^9 \text{ и } 0.58\pm0.05\cdot10^9 \text{ кл/л со-}$ ответственно). Абсолютно низкие концентрации Т-хелперов (СD4+) выявлены в 39,63 % случаев. Повышенное содержание указанных клеток зарегистрировано у 14,07 % обследуемых, причем у мужчин в 6 раз чаще (4,00 и 24,14 % соответственно; р < 0,01). Средний уровень цитотоксических клеток CD8+ в группе обследованных 41-60 лет составляет $0.48\pm0.05\cdot10^9$ кл/л. Повышенные концентрации CD8⁺ зафиксированы у 15,29 % северян без существенной разницы по полу. Уровень содержания естественных киллеров $(CD16^{+})$ в среднем $-0.51\pm0.05\cdot10^{9}$ кл/л без существенных различий у женщин и мужчин (0,50± $\pm 0.03 \cdot 10^9$ и $0.54 \pm 0.06 \cdot 10^9$ кл/л соответственно). Пониженное содержание клеток CD16⁺ зафиксировано у 12,59 % обследованных без выявленной разницы по полу (14,47 и 10,71 %). Высокие средние значения этих клеток отмечены в 44,27 % случаев (у женщин -42,10 %, и у мужчин -46,43 %).

Исследование концентрации клеток с рецептором к трансферрину (CD71⁺) показало,

что количество клеток с указанным носителем в периферической крови у обследуемых жителей Европейского Севера в возрасте 19-40 лет в среднем составило $0.49\pm0.05\cdot10^9$ кл/л с достоверной разницей между женщинами и мужчинами $(0.54\pm0.04\cdot10^9$ и $0.43\pm0.05\cdot10^9$ кл/л соответственно, р < 0,001). В ходе исследования отмечали распространение пониженных концентраций клеток с антигенным маркером CD71⁺ – 52,99 %, при этом у женщин встречаемость данного иммунного дефекта была достоверно ниже (44,68 %, y мужчин - 61,29 %, p < 0,001). Широкое распространение повышенных значений лимфоцитов с рецепторами к трансферрину косвенно свидетельствует о кислородной недостаточности и вероятности развития анемии. Повышенные значения данного параметра встречались в 6,38 % случаев, причем только у женщин. Среднее содержание клеток с рецепторами к апоптозу (CD95⁺) составила $0.51\pm0.05\cdot10^9$ кл/л без существенной разницы по полу (у женщин – $0.54\pm0.04\cdot10^9$ кл/л, у мужчин $-0.47\pm0.05\cdot10^9$ кл/л). Частота встречаемости аномально низких значений апоптоза (CD95+) у жителей Европейского Севера в возрасте 19–40 лет в среднем достигает 47,12 % с достоверной разницей между женщинами и мужчинами (36,17 и 58,06 % соответственно, p < 0.001). Повышенные значения указанного параметра выявлены у 42,21 % обследуемых лиц с небольшой достоверной разницей по полу (y женщин - 48,94 %, y мужчин - 35,48 %).

При обследовании возрастной группы 41-60 лет было выявлено, что среднее содержание клеток с рецептором к трансферрину (CD71⁺) составляет $0.53\pm0.05\cdot10^9$ кл/л (у женщин $-0.50\pm0.03\cdot10^9$, у мужчин $-0.55\pm0.07\cdot10^9$ кл/л). Пониженные значения содержания клеток с рецептором к трансферрину (CD71⁺) отмечены у 55.73 % обследуемых без различия по полу (57.89 % и 53.57 %). В ходе исследования выявлено широкое распространение повышенных концентраций клеток с антигенным маркером CD71⁺ -10.91 %, при этом у женщин данный дисбаланс встречается в 4.5 раза реже, чем у мужчин (3.95 и 17.86 % соответствен-

но). В наших исследованиях уровень среднего содержания клеток с рецепторами к апоптозу (CD95⁺) составил $0.53\pm0.05\cdot10^9$ кл/л, у женщин и мужчин $0.47\pm0.03\cdot10^9$ и $0.59\pm0.07\cdot10^9$ кл/л соответственно. Клетки, отражающие процессы апоптоза (CD95⁺), в 47.27 % случаев имели концентрацию ниже физиологической нормы, особенно у женщин (55,26 %, у мужчин – 39,28 %, р < 0.001). Повышенные значения указанных клеток регистрировались в 35.72 % случаев, при этом у мужчин почти в 2 раза чаще (46.43 %, у женщин – 25.00 %; р < 0.01).

Анализируя гуморальное звено иммунитета в возрастной группе 19–40 лет, выявили, что количество CD20⁺ в среднем составляет $0.51\pm0.05\cdot10^9$ кл/л и, таким образом, превышает физиологическую норму $(0.55\pm0.04\cdot10^9)$ и $0.47\pm0.05\cdot10^9$ кл/л соответственно у женщин и мужчин). В наших исследованиях пониженные значения содержания клеток с рецепторами к CD20⁺ отмечались у 6,45 % обследованных, только у мужчин. Повышенные средние значения данного параметра встречались в 65,94 % случаев с достоверной разницей между женщинами и мужчинами (73,81 и 58,06 % соответственно, р < 0,001). Среднее содержание лимфоцитов с антигенным маркером HLA-DR⁺ находится в пределах физиологических норм – в среднем $0.49\pm0.04\cdot10^9$ кл/л с небольшой достоверной разницей по полу $(0.55\pm0.03\cdot10^9)$ кл/л у мужчин и $0.43\pm0.05\cdot10^9$ кл/л у женщин; p < 0.001). Пониженные концентрации HLA-DR⁺ в среднем выявлены в 34,11 % случаев, причем у женщин достоверно реже, чем у мужчин (19,15 и 49,06 %, p < 0,001). Повышенные значения вышеуказанного параметра были зафиксированы в 16,30 % случаев (у женщин – 21,28 %, и у мужчин – 11,32 %)

Содержание лимфоцитов CD20⁺ в возрастной группе 41–60 лет фактически отражает количество В-клеток $(0,51\pm0,05\cdot10^9 \text{ кл/л})$ и превышает общепринятые физиологические нормы, особенно у мужчин $(0,54\pm0,07\cdot10^9 \text{ кл/л};$ у женщин $-0,47\pm0,03\cdot10^9 \text{ кл/л})$. Пониженные значения содержания клеток с рецепторами

к CD20+ зафиксированы у 15,13 % обследуемых, причем у мужчин они встречались достоверно чаще (у мужчин -21,43 %, у женщин -8,82 %, p < 0.001). Повышенные средние значения этого параметра встречались в 63.13 % случаев с небольшой разницей по полу (69,12 и 57,14 % соответственно). Содержание лимфоцитов с антигенным маркером HLA-DR⁺ в среднем составило $0.49\pm0.05\cdot10^9$ кл/л, т. е. соответствует физиологической норме с небольшой разницей между группами женщин и мужчин $(0.46\pm0.03\cdot10^9)$ и $0.51\pm0.07\cdot10^9$ кл/л соответственно). Выявлено, что пониженные концентрации клеток с рецептором к главному комплексу гистосовместимости класса 2 (HLA-DR⁺) встречаются в 34,12% случаев, есть небольшая разница по полу (у женщин -28,95%, у мужчин -39,28%). Напряжение гуморального звена иммунитета подтверждается заметным уровнем регистрации повышенных концентраций В-клеточных активаторов, антигенов гистосовместимости второго класса (HLA-DR⁺) у 14,66 % лиц, причем у мужчин почти в 3 раза чаще (7,89 и 21,43 % соответственно, p < 0.001).

Заключение. Таким образом, у северян 19–40 лет широко распространены повышенные значения супрессоров-киллеров CD8+ (63,04 и 51,61 % у женщин и мужчин соответственно); естественных киллеров CD16+ (55,32 и 32,26 %); лимфопролиферации CD10+ (22,67 и 27,59 %) на фоне выявленного Т-клеточного дефицита и дефицита клеток с рецепторами к трансферину CD71+ (от 58 до 95 % обследуемых) в зависимости от показателя.

У лиц старшей возрастной группы (41–60 лет) частота повышенных концентраций CD8⁺ и CD16⁺ отмечена в 15 и 44 % случаев, чаще у мужчин (р < 0,001), и ассоциирована с повышением активности В-клеточного звена (HLA-DR⁺), концентраций CD71⁺ и низким уровнем апоптоза (CD95⁺).

Следует предположить, что низкие уровни содержания цитотоксических клеток CD8⁺, CD16⁺ и снижение процессов апоптоза CD95⁺ косвенно свидетельствуют о задержке адап-

тации, сокращении резервных возможностей иммунного гомеостаза у лиц старшей возрастной группы и служат предпосылкой к развитию экологически зависимых иммунодефицитов.

Особая физиологическая значимость повышенного содержания клеток CD8⁺ и CD16⁺ заключается, по нашему мнению, в реализации компенсаторных резервных механизмов адаптации у северян.

Список литературы

- 1. *Агаджанян Н.А.*, *Жвавый Н.Ф.*, *Ананьев В.Н.* Адаптация человека к условиям Крайнего Севера: экологофизиологические механизмы. М., 1998. 240 с.
- 2. Добродеева Л.К., Щёголева Л.С., Дюжикова Е.М., Кашутин С.Л., Типисова Е.В., Сенькова Л.В., Жилина Л.П., Добродеев К.Г. Состояние иммунной системы у лиц, проживающих на Севере в зонах различной степени экстремальности // Иммунология. 2004. № 5. С. 299–301.
- 3. *Щёголева Л.С.* Резервные возможности иммунного гомеостаза у человека на Севере: автореф. дис. . . . д-ра биол. наук. Архангельск, 2005. 37 с.
- 4. *Elsässer-Beile U., von Kleist S., Sauther W., Gallati H., Mönting J.S.* Impaired Cytokine Production in Whole Blood Cell Cultures of Patients with Gynaecological Carcinomas in Different Clinical Stages // Br. J. Cancer. 1993. Vol. 68(1). P. 32–36.
- 5. Gardiner C.M. Killer Cell Immunoglobulin-Like Receptors on NK Cells: The How, Where and Why // Int. J. Immunogenet. 2008. Vol. 35(1). P. 1–8.
- 6. *Щёголева Л.С., Меньшикова М.В., Шашкова Е.Ю.* Соотношение иммунно-гормональных реакций у лиц разных профессий в Приполярном регионе // Экология человека. 2009. № 7. С. 7–10.
- 7. *Баевский Р.М.* Концепция физиологической нормы и критерии здоровья // Рос. физиол. журн. им. И.М. Сеченова. 2003. Т. 89, № 4. С. 473–487.
- 8. Farag S.S., Caligiuri M.A. Human Natural Killer Cell Development and Biology // Blood Rev. 2006. Vol. 20(3). P. 123–137.
 - 9. Lancavecchia A. Mechanisms of Antigen Uptake for Presentation // Curr. Opin. Immunol. 1996. Vol. 8(3). P. 348–354.
- 10. Дёгтева Г.Н., Дмитриев В.Г., Сидоров П.И. Введение: о работах по направлению «Проблемы здравоохранения и социального развития Арктической зоны России» // Проблемы здравоохранения и социального развития Арктической зоны России. М., 2011. С. 3–8.
- 11. Кондаков А.Е., Хаснулин В.И. Метаболическая иммунодепрессия у пришлого населения Крайнего Севера // Проблемы здоровья населения региона Крайнего Севера, Сибири, Дальнего Востока: тез. докл. Красноярск, 1986. С. 45–46.
 - 12. Добродеева Л.К., Сергеева Е.В. Состояние иммунной системы в процессе старения. Екатеринбург, 2014. 136 с.
- 13. *Щёголева Л.С.* Иммунные реакции у взрослых-северян в условиях стандартной антигенной нагрузки // Экология человека. 2010. № 5. С. 11–16.
- 14. Гудков А.Б., Лукманова Н.Б., Раменская Е.Б. Человек в приполярном регионе Европейского Севера: эколого-физиологические аспекты: моногр. Архангельск, 2013. 184 с.
- 15. Добродеева Л.К., Филиппова О.Е., Балашова С.Н. Соотношение содержания иммунокомпетентных клеток в регуляции иммунного статуса человека, проживающего на Севере // Вестн. Урал. мед. академ. науки. 2014. № 2(48). С. 132–134.
- 16. *Филиппова О.Е.*, *Добродеева Л.К.*, *Щёголева Л.С. Шашкова Е.Ю.* Соотношение фенотипов лимфоцитов периферической крови у людей в процессе физиологической регуляции иммунного ответа // Вестн. Сев. (Арктич.) федер. ун-та. Сер.: Мед.-биол. науки. 2014. № 4. С. 73–80.
- 17. *Щёголева Л.С., Филиппова О.Е., Сергеева Т.Б., Шашкова Е.Ю., Некрасова М.В.* Физиологическая роль клеточно-опосредованной цитотоксичности в реакциях иммунитета у лиц в экстремальных климатоэкологических условиях // Вестн. Сев. (Арктич.) федер. ун-та. Сер.: Мед.-биол. науки. 2013. № 4. С. 89–95.

МЕДИКО-БИОЛОГИЧЕСКИЕ НАУКИ

References

- 1. Agadzhanyan N.A., Zhvavyy N.F., Anan'ev V.N. *Adaptatsiya cheloveka k usloviyam Kraynego Severa: ekologo-fiziologicheskie mekhanizmy* [Human Adaptation to the Conditions of the Far North: Ecological and Physiological Mechanisms]. Moscow, 1998. 240 p.
- 2. Dobrodeeva L.K., Shchegoleva L.S., Dyuzhikova E.M., Kashutin S.L., Tipisova E.V., Sen'kova L.V., Zhilina L.P., Dobrodeev K.G. Sostoyanie immunnoy sistemy u lits, prozhivayushchikh na Severe v zonakh razlichnoy stepeni ekstremal'nosti [The Condition of the Immune System in Persons Residing in the North in Different-Extremity Zones]. *Immunologiya*, 2004, no. 5, pp. 299–301.
- 3. Shchegoleva L.S. *Rezervnye vozmozhnosti immunnogo gomeostaza u cheloveka na Severe*: avtoref. dis. ... d-ra biol. nauk [Reserve Capacity of Immune Homeostasis in Humans Lining in the North: Dr. Biol. Sci. Diss. Abs.]. Arkhangelsk, 2005. 37 p.
- 4. Elsässer-Beile U., von Kleist S., Sauther W., Gallati H., Mönting J.S. Impaired Cytokine Production in Whole Blood Cell Cultures of Patients with Gynaecological Carcinomas in Different Clinical Stages. *Br. J. Cancer*, 1993, vol. 68 (1), pp. 32–36.
- 5. Gardiner C.M. Killer Cell Immunoglobulin-Like Receptors on NK Cells: The How, Where and Why. *Int. J. Immunogenet.*, 2008, vol. 35(1), pp. 1–8.
- 6. Shchegoleva L.S., Men'shikova M.V., Shashkova E.Yu. Sootnoshenie immunno-gormonal'nykh reaktsiy u lits raznykh professiy v Pripolyarnom regione [Correlation of Immunohormonal Reactions in Persons of Varied Employment in Circumpolar Region]. *Ekologiya cheloveka*, 2009, no. 7, pp. 7–10.
- 7. Baevskiy R.M. Concept of Physiological Norm and Criteria of Health. *Rossiyskiy fiziologicheskiy zhurnal im. I.M. Sechenova*, 2003, vol. 89, no. 4, pp. 473–487.
- 8. Farag S.S., Caligiuri M.A. Human Natural Killer Cell Development and Biology. *Blood Rev.*, 2006, vol. 20 (3), pp. 123–137.
 - 9. Lancavecchia A. Mechanisms of Antigen Uptake for Presentation. Curr. Opin. Immunol., 1996, vol. 8 (3), pp. 348–354.
- 10. Degteva G.N., Dmitriev V.G., Sidorov P.I. Vvedenie: o rabotakh po napravleniyu "Problemy zdravookhraneniya i sotsial'nogo razvitiya Arkticheskoy zony Rossii" [Introduction: Papers on the Issues of Health and Social Development of the Russian Arctic]. *Problemy zdravookhraneniya i sotsial'nogo razvitiya Arkticheskoy zony Rossii* [Issues of Health and Social Development of the Russian Arctic]. Moscow, 2011, pp. 3–8.
- 11. Kondakov A.E., Khasnulin V.I. Metabolicheskaya immunodepressiya u prishlogo naseleniya Kraynego Severa. *Problemy zdorov'ya naseleniya regiona Kraynego Severa, Sibiri, Dal'nego Vostoka: tez. dokl.* [Metabolic Immunodepression in Newcomers to the Far North. Issues of Health in the Far North, Siberia and the Far East: Outline Reports]. Krasnoyarsk, 1986, pp. 45–46.
- 12. Dobrodeeva L.K., Sergeeva E.V. *Sostoyanie immunnoy sistemy v protsesse stareniya* [The State of the Immune System During Ageing]. Yekaterinburg, 2014. 136 p.
- 13. Shchegoleva L.S. Immunnye reaktsii u vzroslykh-severyan v usloviyakh standartnoy antigennoy nagruzki [Immune Reactions in Northern Adults to Standard Antigenic Load]. *Ekologiya cheloveka*, 2010, no. 5, pp. 11–16.
- 14. Gudkov A.B., Lukmanova N.B., Ramenskaya E.B. *Chelovek v pripolyarnom regione Evropeyskogo Severa: ekologo-fiziologicheskie aspekty* [Human in the Circumpolar Region of the European North: Ecological and Physiological Aspects]. Arkhangelsk, 2013. 184 p.
- 15. Dobrodeeva L.K., Filippova O.E., Balashova S.N. Sootnoshenie soderzhaniya immunokompetentnykh kletok v regulyatsii immunnogo statusa cheloveka, prozhivayushchego na Severe [The Content Ratio of Immunocompetent Cells in the Regulation of the Immune Status of a Person Living in the North]. *Vestnik Ural'skoy meditsinskoy akademicheskoy nauki*, 2014, no. 2 (48), pp. 132–134.
- 16. Filippova O.E., Dobrodeeva L.K., Shchegoleva L.S. Shashkova E.Yu. Sootnoshenie fenotipov limfotsitov perifericheskoy krovi u lyudey v protsesse fiziologicheskoy regulyatsii immunnogo otveta [The Ratio of Peripheral Blood Lymphocyte Phenotypes in Humans at Physiological Regulation of Immune Response]. *Vestnik Severnogo (Arkticheskogo) federal'nogo universiteta. Ser.: Mediko-biologicheskie nauki*, 2014, no. 4, pp. 73–80.
- 17. Shchegoleva L.S., Filippova O.E., Sergeeva T.B., Shashkova E.Yu, Nekrasova M.V. Fiziologicheskaya rol' kletochno-oposredovannoy tsitotoksichnosti v reaktsiyakh immuniteta u lits v ekstremal'nykh klimatoekologicheskikh usloviyakh [Physiological Role of Cell-Mediated Cytotoxicity in Immune Responses of Northerners]. *Vestnik Severnogo (Arkticheskogo) federal'nogo universiteta. Ser.: Mediko-biologicheskie nauki*, 2013, no. 4, pp. 89–95.

Shchegoleva Lyubov Stanislavovna

The Institute of Environmental Physiology, Ural Branch of the Russian Academy of Sciences (Arkhangelsk, Russia)

Sergeeva Tatyana Borisovna

The Institute of Environmental Physiology, Ural Branch of the Russian Academy of Sciences (Arkhangelsk, Russia)

CD8⁺ AND CD16⁺ T-CELLS CONTENT IN VARIOUS AGE GROUPS OF THE INHABITANTS OF THE ARCTIC ZONE

Cytotoxic T-lymphocytes (CD8⁺, CD16⁺) determine cell-mediated cytotoxic activity in physiological responses of immune homeostasis in the north of the European part of Russia. In people under 40 years, the content of cytotoxic T-lymphocytes is higher than that in the older age group and is associated with the differentiation of T-cells, lymphoproliferation, and apoptosis. We found that increased content of CD8+ and CD16+ T-cells is required to maintain immune homeostasis and is associated with deficient phagocytic activity of mature and functionally active CD3+ cells, with increased levels of CD10+ lymphoproliferation and CD95⁺ apoptosis accompanied by lower activity of immune cells differentiation and higher cell-mediated cytotoxicity. Northerners aged 19-40 years often show increased values of lymphoproliferation (SD10⁺), natural killer cells (CD16⁺), and suppressor cells (CD8⁺). We revealed deficiency of T-cells and transferrin receptor cells (CD71⁺). The subjects from the older age group (41–60 years) frequently had low concentrations of CD8⁺ and CD16⁺ (especially women) associated with increased activity of B-cell level (HLA-DR+), increased concentrations of CD71+, and a low level of apoptosis (CD95+). In northerners, the content of CD8+ and CD16+ T-cells in the peripheral blood, as well as the frequency of their recorded high levels are reducing with age; p < 0.01. Lymphoid subpopulations of CD8+ suppressors and CD16+ natural killer cells have a compensatory and protective role. The obtained data on the physiological importance of the content of cytotoxic lymphocytes (CD8+, CD16+) in the peripheral blood of northerners complement current views on the physiological mechanisms in people living in the north of the European part of Russia.

Keywords: cytotoxic T-lymphocytes, helper T-cells, natural killer cells, developmental immunology.

Контактная информация:

Щёголева Любовь Станиславовна

адрес: 163000, г. Архангельск, просп. Ломоносова, д. 249;

e-mail: shchegoleva60@mail.ru

Сергеева Татьяна Борисовна

адрес: 163000, г. Архангельск, просп. Ломоносова, д. 249;

e-mail: tanya--86@mail.ru